

SCIENTIFIC COMPUTING IN ELECTRICAL ENGINEERING (SCEE 2024)

CONFERENCE PROGRAM

Darmstadt, Germany March 4-8, 2024

Committees

SCEE Standing Committee (scee-board@temf.tu-darmstadt.de)

Ursula van Rienen (University of Rostock, chair) Gabriela Ciuprina (Politehnica University of Bucharest, secretary) Wil Schilders (TU Eindhoven, treasurer) Michael Günther (University of Wuppertal) Jörg Ostrowski (Siemens AG)

SCEE 2024 Organizing Committee (scee-info@temf.tu-darmstadt.de)

Ruxandra Barbulescu (INESC-ID Lisboa) Idoia Cortes Garcia (TU Eindhoven) Herbert De Gersem (TU Darmstadt, chair) Heike Koch (TU Darmstadt) Irina Munteanu (Dassault Systèmes, TU Darmstadt) Sebastian Schöps (TU Darmstadt) Peter Thoma (Frankfurt University of Applied Sciences) Stefan Ulbrich (TU Darmstadt)

SCEE Program Committee (scee-pc@temf.tu-darmstadt.de)

Martijn van Beurden (TU Eindhoven) Neil Budko (TU Delft) Gabriela Ciuprina (Politehnica University of Bucharest) Herbert De Gersem (TU Darmstadt, chair) Georg Denk (Infineon) Herbert Egger (Johannes Kepler University Linz) Michael Günther (University of Wuppertal) Marcel Hendrix (Signify) Stefan Kurz (Robert Bosch GmbH, University of Jyväskylä) Jörg Ostrowski (Siemens AG) Ursula van Rienen (University of Rostock) Vittorio Romano (University of Catania) Ruth V. Sabariego (KU Leuven) Wil Schilders (TU Eindhoven) Sebastian Schöps (TU Darmstadt) Caren Tischendorf (Humboldt University of Berlin)

Programme

SCEE 2024 Conference Schedule Darmstadt, Germany, March 4–8, 2024

Registration is possible on Monday starting at 17:00, on Tuesday from 8:00 and on all other days from 8:30 onwards.

Monday, March 4, 2024

17:00-18:00	Registration	
Public lecture:		
18:00-19:30	Wil Schilders	Public lecture: The key role of mathematics in the
		electronics industry
19:30-21:00	Welcome drink	

Tuesday, March 5, 2024

8:00-8:45		Registration	
8:45-9:00		Opening ceremony	
Session A		Computational Elect	tromagnetics
		Multiphysics and mu	ultiscale modelling
		Chair: Sebastian Schöp	S
9:00-9:50	A1	Pilar Salgado	Keynote: Multiphysics simulation of electri-
			cal upsetting processes: Focus on modelling and
			numerical analysis of the electromagnetic sub-
			model
9:50-10:10	A2	Louis Denis, Vincent	A multi-scale approach within magneto-thermal
		Nuttens, Philippe	FE simulations for the computation of AC
		Velten, Benoît	losses in superconducting magnets
		Vanderheyden and	
		Christophe Geuzaine	
10:10-10:30	A3	Revathi Appali,	Current challenges in multiphysics and multi-
		Dennie Supriatna,	scale modelling of electrically active implants
		Jan Philipp Payonk,	
		Lam Vien Che and	
		Ursula van Rienen	
10:30-11:00		Coffee break	
Session B		Mathematical and Computational Methods	
		Simulation methods involving neural networks	
		Chair: Idoia Cortes Ga	rcia
11:00-11:20	B1	Ziqing Guo and Ruth	Physics-informed neural network for time do-
		Sabariego	main 2D magneto-quasi-static simulation

11:20-11:40	B2	Moritz von Tresckow, Ion Gabriel Ion, Herbert De Gersem and Dimitrios Loukrezis	Neural subdomain solver for magnetostatic field computations of a quadrupole magnet
11:40-12:00	B3	Paulo Machado, Giovanni Nastasi, L. Miguel Silveira and Ruxandra Barbulescu	Efficient machine learning methods to predict the stationary electron density profile in a n+/n/n+ silicon diode
12:00-12:20	B4	Steven Stroka, Norman Haußmann and Markus Clemens	Efficient assessment of high-resolution low- frequency magnetic field exposure scenarios us- ing reduced order models
12:20-13:10		Lunch	
Session C		Chair: Wil Schilders	
13:10-14:00	C1	Giuseppe Alì	Keynote: Semiconductor device models from the perspective of an applied mathematician
Session D		Posters	
		Chairs: Melina Merkel,	Kersten Schmidt
14:00-14:20		Poster blitz (1 minu	te slides)
14:20-15:30	D1	Jan Wagner and Peter Thoma	Semantic data structure for a digital twin of the EMC compliance testing domain
14:20-15:30	D2	Idoia Cortes Garcia, Pratik M. Kumbhar and Jonas Pade	Convergence of waveform relaxation for index 2 field/circuit coupled DAEs classified with gener- alized circuit elements
14:20-15:30	D3	Petrus Wilhelmus Nicolaas van Diepen, Indy Pradyka Neerhoff, Roeland Johannes Dilz and Martijn Constant van Beurden	The MOT-EFIE with loop-star decomposition
14:20-15:30	D4	Siamak Pourkeivannour, Mitrofan Curti and Elena A. Lomonova	A two-dimensional implementation of Dar- win formulation to model resistive-inductive- capacitive effects in foil windings
14:20-15:30	D6	Ara Abdulsatar Assim Assim, Aarno Pärssinen and Timo Rahkonen	Modeling image frequency signal and its cancel- lation in complex downconversion circuit
14:20-15:30	D7	Igor Tsukerman and Vadim Markel	Bulk-boundary correspondence in topological electrodynamics: From 1D to higher dimensions
14:20-15:30	D8	Jürgen Dölz, David Ebert, Sebastian Schöps and Anna Ziegler	Shape uncertainty quantification of Maxwell eigenmodes and -spaces with application to TESLA cavities

14:20-15:30	D9	Jonas Bundschuh,	Foil winding homogenization with consideration
		Yvonne	of capacitive effects
		Späck-Leigsnering	
		and Herbert De	
		Gersem	
14:20-15:30	D10	Markus Clemens,	A port-Hamiltonian system perspective on
		Marvin-Lucas Henkel,	electromagneto-quasistatic field formulations of
		Fotios Kasolis and	Darwin-type
14.00 15 00	D11	Michael Gunther	
14:20-15:30	DII	Alistair Muir, Ursula	Modelling the beam impedance of elliptical un-
		van Rienen, Erion	aulators using the coupled S-parameter calcula-
		Gjonaj, Paul Voltz, Frederik Ouetscher	
		and Atoosa Mosock	
14.20 15.20	D19	Wei Chen Thomas	Determination of an electrical aquivalent cir
14.20 10.00		Henneron Stéphane	cuit of a PCR using the Cayer ladder network
		Clénet and Jun Zou	method
14.20-15.30	D13	Théodore Cherrière	Toward multi-material topology optimization of
11.20 10.00	210		doubly-excited electrical machines using recur-
			sive material interpolation
14:20-15:30	D14	Francesco Ferranti	Machine learning for wavelength-dependent re-
			sponses in nano photonics
15:30-16:00		Coffee break	
Session E		Computational Elect	tromagnetics
		Formulations	
		Chair: Martijn van Beu	urden
16:00-16:20	E1	Herbert Egger, Felix	A scalar potential approach for magnetostatics
		Engertsberger and	avoiding the coenergy
		Bogdan Radu	
16:20-16:40	E2	Robert Hahn, Erik	Mortar thin shell approximation for transient
		Schnaubelt, Mariusz	analysis of superconducting accelerator magnets
		Wozniak, Andrea	
		vitrano, Christophe	
		Geuzaine and	
16.40 17.00	F 2	Sepastian Schops	Floatnie ainquit alongent houndany and ditions for
10:40-17:00	ĽЭ	Claudia Pacurar and	electric circuit element boundary conditions for
		Buth V Seberioro	electromagnetic quasistatic models: $A - \phi$ polen- tials versus F field based formulations
17.15 10.00		Touristic walk	uuis versus E-jieiu vuseu jormulations
11.10-19.00		TOULISHIC WAIK	

Wednesday, March 6, 2024

Session F		Coupled Problems and Modelling		
		Applications		
		Chair: Peter Thoma		
9:00-9:50	F1	Martina Busetto and	Keynote: Modelling, methods development	
		Christoph	and scientific computing at ABB	
		Winkelmann		

9:50-10:10	F2	Karsten Müller.	Comparison and analysis of skewing methods of
		Andreas Wanke, Yves	PMSM in 2D and 3D FEA simulations
		Burkhardt and	
		Herbert De Gersem	
10:10-10:30	F3	Albert Piwonski,	Electromagnetic modeling of power cables with
		Julien Dular, Rodrigo	large cross sections using coordinate transfor-
		Silva Rezende and	mations and homogenization techniques
		Rolf Schuhmann	<i>5</i> 1
10:30-11:00		Coffee break	
Session G		Mathematical and C	Computational Methods
		Optimization and in	verse problems
		Chair: Roland Pulch	
11:00-11:20	G1	Christian Bergfried,	Calibration of a squirrel-cage induction machine
		Leon Blumrich,	thermal model
		Armin Galetzka,	
		Yvonne	
		Späck-Leigsnering	
		and Herbert De	
		Gersem	
11:20-11:40	G2	Nepomuk Krenn and	Multi-material topology optimization of an elec-
		Peter Gangl	tric machine considering demagnetization
11:40-12:00	G3	Stefan Eijsvogel,	Exploring the reconstruction of a finite dielec-
		Roeland Dilz and	tric frustum-shaped object by the parametrized
		Martijn van Beurden	spatial spectral volume integral equation
12:00-13:30		Lunch	
13:30-17:30		Excursion	
18:00-22:00		Conference dinner	

Thursday, March 7, 2024

Session H		Mathematical and Computational Methods	
		Scalable solvers	
		Chair: Caren Tischende	orf
9:00-9:50	H1	Vandana Dwarka	Keynote: Towards fast and scalable iterative
			solvers for indefinite systems arising in electro-
			magnetic simulations
9:50-10:10	H2	Frederik Quetscher,	Modal transmission condition for domain de-
		Erion Gjonaj and	composition for guided wave problems
		Herbert De Gersem	
10:10-10:30	H3	Herbert Egger, Felix	On the convergence of iterative solvers for non-
		Engertsberger and	linear magnetostatics
		Bogdan Radu	
10:30-11:00		Coffee break	
Session I		Mathematical and C	Computational Methods
		Model reduction and	l surrogate modelling
		Chair: Ruth Sabariego	

11:00-11:20	I1	Christine Herter, Sebastian Schöps and	Eigenvalue optimization with respect to shape- variations in electromagnetic cavities
		Winnifried Wollner	
11:20-11:40	I2	Anna Ziegler, Melina	Spurious modes in reduced basis approximations
		Merkel and Sebastian	for Maxwell's eigenvalue problem
11 40 10 00	10	Schops	
11:40-12:00	13	Antonio Carlucci and	Rational approximation for the solution of
		Stefano Grivet	large-scale Lyapunov equations
10.00 10.00	τ.4	Talocia Decel Dec Deef	Deduced much seture detice for low much metric
12:00-12:20	14	Pascal Den Boei, Joseph Maubach, Wil	Reduced rank extrapolation for low-rank matrix
		Sobildorg and Nathan	sequences
		ven de Weuw	
12.20 13.10			
12.20-13.10 Session I		Computational Floct	tromagnotics
Session J		Matorial modelling	tromagnetics
		Chair Herbert Egger	
13:10-14:00	.J1	Benoît Vanderheyden	Keynote: Finite element models for type-II
10.10 11.00	01		superconductors: constitutive laws and formula-
			tions
Session K		Posters	
		Chairs: Revathi Appali	. Ruxandra Barbulescu
14:00-14:20		Poster blitz (1 minu	te slides)
14:20-15:30	K1	Alessio Cesarano and	Tracing pareto-optimal points in multi-objective
		Peter Gangl	shape optimization applied to electric machines
14:20-15:30	K2	Herbert Egger, Felix	On the regularized H-field approach for nonlin-
		Engertsberger and	ear magnetostatics
		Klaus Roppert	
14:20-15:30	K3	Rodrigo Silva	Recurrent neural networks as predictors of time
		Rezende, Albert	signals from electromagnetic simulations
		Piwonski and Rolf	
14.20.15.20	T 74	Schuhmann	
14:20-15:30	K4	Leon Herles, Mario	Frequency-stable full Maxwell using generalized
		Mally, Melina Merkel,	tree-cotree gauging
		Jorg Ostrowski and	
14.20 15.20	V5	Deter Einsten Ideie	Indon aware learning of sincuite
14:20-15:50	КЭ	Certes Careia	Thuex-aware learning of circuits
		Lonnart Janson Wil	
		Schilders and	
		Sebastian Schöps	
14.20-15.30	K6	Jonas Christ and	A self-consistent model for wakefield and space
1.20 10.00		Erion Gjonaj	charge calculations
14:20-15:30	K7	Sosoho-Abasi	Comparative analysis of sensitivity results be-
		Udongwo, Shahnam	tween a 3D HOM coaxial coupler model and an
		Gorgi Zadeh, Piotr	equivalent circuit mode
		Putek, Rama Calaga	
		and Ursula van	
		Rienen	

14:20-15:30	K8	Karthik Sridhar, Ursula van Rienen and Revathi Appali	Understanding local field potential recordings by segmented deep brain stimulation electrodes: A computational study
14:20-15:30	K9	Mario Mally, Leon Herles, Idoia Cortes Garcia and Sebastian Schöps	Parallelization in space and time for parabolic problems in 3-D
14:20-15:30	K10	Elias Paakkunainen, Jonas Bundschuh, Idoia Cortes Garcia, Herbert De Gersem and Sebastian Schöps	Circuit consistency and structure of inductive foil conductor models
14:20-15:30	K11	Herbert Egger and Vsevolod Shashkov	A magnetic oriented approach to field-circuit coupling
14:20-15:30	K12	Kersten Schmidt and Timon Seibel	On a hybridized domain decomposition formu- lation
14:20-15:30	K13	Tobias Karim Aouini, Ortwin Farle, Timo Euler and Sebastian Schöps	Investigation of S-parameter evaluation for cou- pled meshes in hybrid solver scenarios
14:20-15:30	K14	Kersten Schmidt	Eddy current modelling with thin sheet basis functions
15:30-16:00		Coffee break	
Session L		Circuit Simulation &	z Coupled Problem and Modelling
		Chair: Markus Clemens	S
16:00-16:20	L1	Orazio Muscato, Giovanni Nastasi, Giorgia Vitanza and Vittorio Romano	Optimized quantum drift-diffusion model for a resonant tunneling diode
16:20-16:40	L2	Ricardo Riaza	Some recent results involving homogeneous models of electrical and electronic circuits
16:40-17:00	L3	Tommaso Bradde and Stefano Grivet-Talocia	Certified stable LPV macromodels of mildly nonlinear circuits

Friday, March 8, 2024

Session M		Mathematical and Computational Methods Uncertainty quantification & stochastic models Chair: Gabriela Ciuprina	
9:00-9:50	M1	Dimitrios Loukrezis	Keynote: Reduced order modeling and uncer- tainty quantification for (electromagnetic) digi- tal twins
9:50-10:10	M2	Roland Pulch	Stochastic Galerkin method for linear port- Hamiltonian differential-algebraic equations

10:10-10:30	M3	Maximilian Schade,	Coupled systems of SDEs and SPDEs with al-
		Nicolas Perkowski	georaic constraints
		and Caren	
10:30-11:00		Coffee break	1 7 6 1 11
Session N		Coupled Problems a	nd Modelling
		Device modelling an	d simulation
		Chair: Jörg Ostrowski	
11:00-11:20	N1	Clemens Etl, Mauro	Signed-particle Monte Carlo algorithm for
		Ballicchia, Mihail	Wigner transport in linear electromagnetic
		Nedjalkov and Josef	fields
		Weinbub	
11:20-11:40	N2	Daniele Soccodato,	Machine learned corrections to the Empirical
		Gabriele Penazzi,	Tight-Binding method
		Alessandro Pecchia,	
		Anh-Luan Phan and	
		Matthias Auf der	
		Maur	
Session 0		Mathematical and C	Computational Methods
		Parallel-in-time met	hods
		Chair: Jörg Ostrowski	
11:40-12:00	01	Julian Sarpe, Andreas	Parallel-in-time adjoint sensitivity analysis for
		Klaedtke and Herbert	time-periodic circuits
		De Gersem	
12:00-12:20	O2	Erik Schnaubelt,	Parallel-in-time integration of transient phe-
		Mariusz Wozniak,	nomena in no-insulation superconducting coils
		Julien Dular, Idoia	using parareal
		Cortes Garcia and	
		Sebastian Schöps	
12:20-12:30		Closing remarks	
12:30-13:30		Lunch	

Keynote speakers

Wil Schilders (TU Eindhoven) The key role of mathematics in the electronics industry

Wil Schilders obtained his MSc in mathematics, physics and astronomy from the Radboud University in Nijmegen (NL) in 1978, and his PhD in numerical mathematics from Trinity College Dublin, Ireland, in 1980. From 1980-2006 he worked in the Mathematical Software Group and the Applied Mathematics Group at the Philips Research Laboratories in Eindhoven (NL), and from 2006-2010 was the head of the Mathematics Group at NXP Semiconductors. His work at Philips and NXP Semiconductors was mainly concerned with the development of robust and efficient numerical methods for the simulation of semiconductor devices, electronic circuits and electromagnetics prob-

lems. In 1999, he became a full professor (part-time) of scientific computing for industry at Eindhoven University of Technology. Since 2010, he is both a professor at TU Eindhoven and the executive director of the Dutch Platform for Mathematics. He is active in organising workshops and international conferences (e.g. SCEE 2002, Preconditioning 2015, SCEE 2020, SCEE 2022, SIAM CSE 2023), also initiated and chaired the European network on Model Order Reduction (EU-MORNET, 2014-2018) with over 300 researchers. He has been president of the European Consortium of Mathematics for Industry (ECMI, 2010-2011) and the European Service Organisation of Mathematics for Industry and Innovation (EU-MATHS-IN, 2016-2020). In 2019, he was elected officer-at-large in the board of the International Council for Industrial and Applied Mathematics (ICIAM), and currently is its president till September 2027. Wil was the 4th Mittelsten-Scheid guest professor at the Bergische Universitaet Wuppertal in 2020-2021, and is a Hans Fischer senior fellow at TU Munich. In 2022, he was elected SIAM fellow and also received the Stairway to Impact award of the Dutch research funding organization NWO.

Guiseppi Alì (Università della Calabria)

$Semiconductor\ device\ models\ from\ the\ perspective\ of\ an\ applied\ mathematician$

Giuseppe Alì received a degree in mathematics from the University of Catania (IT) in 1990, and his PhD in mathematics from the same university in 1995, under the supervision of Prof. Angelo Marcello Anile. From 1997 to 2007 he worked for the Consiglio Nazionale delle Ricerche (CNR) as a researcher at the Neapolitan branch of the Istituto per le applicazioni del calcolo "Mauro Picone" (IAC). In 2007 he moved to the University of Calabria as a researcher (assistant professor) and, since 2011, as associate professor. His research interests include coupled problems in applied mathematics (theoretical and numerical study of partial-differential-algebraic equations), hyperbolic problems in applied mathematics (modelling of semiconduc-

tor devices, fluid dynamics and magnetohydrodynamics, general relativity, hydrodynamic models for plasmas), and more recently Model Order Reduction (MOR).

Martina Busetto (ABB Switzerland Corporate Research) Modelling, methods development and scientific computing at ABB

Martina Busetto received the B.Sc. degree in Energy Endegree in Mathematical Engineergineering and the M.Sc. ing from the University of Padua in 2015 and 2018, respectively, and her Ph.D. in applied mathematics from Polytechnic of Turin and University of Turin in 2022. Since 2022,she works as Computational Scientist December for the ABB Corporate Research Center in Switzerland. Her research interests involve the development of mathematical models and numerical methods for engineering applications.

Vandana Dwarka (TU Delft)

Towards fast and scalable iterative solvers for indefinite systems arising in electromagnetic simulations

Vandana Dwarka obtained her MSc and PhD in Numerical Mathematics from the Delft University of Technology (TUD). Before her time in academia, she worked in various industry roles, as she also has a background in law and econometrics. Currently, she is an assistant professor in the Numerical Analysis group at TUD. Her research focuses on fast and scalable numerical solvers for electromagnetic wave equations, with a special focus on problems leading to highly indefinite linear systems. In particular, her work on the Helmholtz equation has

solved some long-standing open problems. She focuses on a balanced approach between theoretical results and applications. Her research interests and interdisciplinary background moves her to collaborate with industry to see her methods validated and applied in practice.

Dimitrios Loukrezis (Siemens AG and TU Darmstadt) Reduced order modeling and uncertainty quantification for (electromagnetic) digital twins

Dimitrios Loukrezis received his Diploma (M.Sc. equivalent) in Electrical and Computer Engineering from the National Technical University of Athens (Greece, 2012), his M.Sc. in Simulation Sciences from RWTH Aachen University (Germany, 2014), and his Ph.D. degree in Electrical Engineering from TU Darmstadt (Germany, 2019). Since 2019, he is post-doctoral researcher and research group leader at the Institute for Accelerator Science and Electromagnetic Fields, TU Darmstadt. Since 2021, he also works as Research Scientist for Modeling, Simulation, and Optimization of Digital Twins at Siemens AG. His research interests include the development of computational

methods for uncertainty quantification, surrogate modeling, and scientific machine learning, for engineering applications.

Pilar Salgado (University of Santiago de Compostela) Multiphysics simulation of electrical upsetting processes: Focus on modelling and numerical analysis of the electromagnetic submodel

Pilar Salgado is currently Associate Professor in the Department of Applied Mathematics at the University of Santiago de Compostela (Spain) and a researcher affiliated to the Galician Centre for Mathematical Research and Technology (CITMAga). From the beginning of her career her research has focused on the mathematical and numerical analysis of systems of partial differential equations mainly related to low-frequency electromagnetism. Her main contributions in this field are pioneer works related to the numerical analysis of magnetic field/scalar magnetic potential formulations for eddy current problems, theoretical support for eddy current models with electric ports,

innovative strategies to accelerate the transient solution of periodic electromagnetic problems and development of advanced modeling techniques for multiphysics processes. The results obtained have been applied in various fields such as metallurgy (induction heating, forging, electrical arc furnaces), automotive industry (electromagnetic forming) and electrical machines. She has intensively participated in numerous technology transfer contracts related to the numerical simulation of industrial problems in metallurgy and electrical engineering with a wide range of companies: Ferrooatlántica R&D (now part of the FerroGlobe Group), Robert Bosch GmbH (Germany), ABB Power Grids Spain S.A.U., Altair Engineering France, Taranis Energy and Cie Galfor (Cie Automotive Group). She has also contributed to the development of the registered software MaxFEM and THE-SIF. She is co-author of the book "Mathematical models and numerical simulation in electromagnetism" (Springer) focused on modelling and numerical simulation in electromagnetism. She has been member of the organizing committee of several international research activities: 19th European Conference European Conference on Numerical Mathematics and Advanced Applications (ENUMATH 2005), the Workshop on Numerical and Electromagnetics and Industrial Applications (NELIA 2011) and the 19th European Conference on Mathematics for Industry (ECMI 2016).

Benoît Vanderheyden (Université de Liège) Finite element models for type-II superconductors: constitutive laws and formulations

Benoît Vanderheyden was born in Belgium in 1969. He received the B.Sc. degree in electrical engineering (physical electronics) from the University of Liège, Belgium, in 1992. He received the M.Sc. and Ph.D. degrees in nuclear physics from the University of Illinois at Urbana-Champaign, IL, USA, in 1994 and 1998, respectively. From 1998 to 2000, he was a postdoctoral fellow at the Niels Bohr Institute, Copenhagen, Denmark. In 2000, he joined the Department of Electrical Engineering and Computer Science of the University of Liège, where he is currently a Full Professor. His current research interests include the numerical and physical modeling of superconductors and magnetic materials, in view of electrical engineering applications such

as high-field magnets and magnetic shielding.

Christoph Winkelmann (ABB Switzerland Corporate Research) Modelling, methods development and scientific computing at ABB

Christoph Winkelmann obtained his MSc in computational science and engineering from ETH Zürich (CH) in 2004, and his PhD in numerical mathematics from EPFL Lausanne (CH) in 2007. From 2008-2013 he worked at Philip Morris International R&D in Neuchâtel (CH) on the development of physical models, mathematical models and numerical methods for, and on their application to the simulation of aerosol formation, transport, evolution and filtration in tobacco products. From 2013-2016 he was a scientific software developer in a joint project between ABB Corporate Research and ETH Zürich on a high resolution simulation tool for power devices, focusing on magnetohydrodynamic simulations of switching arcs and adaptive mesh re-

finement for electro-thermal applications. Since 2017, he has been a research scientist at ABB Corporate Research Switzerland in Baden-Dättwil (CH), in charge of maintaining and improving tailored simulation solutions for ABB-specific applications. Since 2018, he has been leading the development of the ABB arc simulation platform.

Sponsors

SIEMENS

Seeing beyond

CREAT®R COMPUTATIONAL ELECTRIC MACHINE LABORATORY